Design, Simulation and Analysis of a Parallel Hybrid Electric Propulsion System for Unmanned Aerial Vehicles
نویسندگان
چکیده
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
منابع مشابه
Active Suspension System in Parallel Hybrid Electric Vehicles
In previous studies, active suspension system in conventional powertrain systems was investigated. This paper presents the application of active suspension system in parallel hybrid electric vehicles as a novel idea. The main motivation for this study is investigation of the potential advantages of this application over the conventional one. For this purpose, a simultaneous simulation is develo...
متن کاملBidirectional Buck-Boost Integrated Converter for Plug-in Hybrid Electric Vehicles
Background and Objectives: Power electronics infrastructures play an important role in charging different types of electric vehicles (EVs) especially Plug-in Hybrid EVs (PHEVs). Designing appropriate power converters is the topic of various studies. Method: In this paper, a novel bidirectional buck-boost multifunctional integrated converter is presented which is capable of handling battery and ...
متن کاملHybrid Propulsion System Design of a VTOL Tailsitter UAV
Tailsitter UAVs with their combined vertical take off and landing (VTOL) and fixed-wing aircraft with full flightspeed regime capability provides a distinct alternative to rotary-wing and ducted fan UAVs (OAVs). ITU-BYU Tailsitter concept aims to obtain the energy efficient regimes across the VTOL and the cruising flight regimes. This paper describes the hybrid propulsion system design approach...
متن کاملDesign Methodology of a Hybrid Propulsion Driven Electric Powered Miniature Tailsitter Unmanned Aerial Vehicle
Contrary to the manned tailsitter aircraft concepts, which have been shelved and forgotten after mid 1960’s, the unmanned versions of these concepts have become popular. Since, tailsitter type UAVs combine both vertical takeoff and landing (VTOL) operation and relatively high speed cruise flight capabilities which provide manifest advantages over the other VTOL aircraft concepts, including heli...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کامل